厚生労働科学研究費補助金 (障害者対策総合研究事業) (神経・筋疾患分野) (分担) 研究年度終了報告書

自律神経機能異常を伴い慢性的な疲労を訴える患者に対する 客観的な疲労診断法の確立と慢性疲労診断指針の作成

採取データについての統計解析と診断決定木

研究分担者 小泉 淳一 (横浜国立大学大学院工学研究院機能の創生部門)

研究要旨

研究期間において研究班データセンターに集約された慢性疲労症候群患者168名と健常人96名のデータについて、群間比較をし、有意差のあったデータ項目について、感度と特異度を計算した。また、これらの結果を基に、産業医等を対象としたPrimary診断決定木と、専門医等を対象とするSecondary診断決定木を構築した。

A. 研究目的

疲労の指標を統計学的手法により探索・検証 し、慢性疲労の診断に関して十分な尤度比を与 える診断決定木を求めることを目的とした。

B. 研究方法

研究班のデータセンター (大阪市立大学医学 部附属病院 医薬品・食品効能評価センター) に 集約された慢性疲労症候群患者と健常人の匿名 化データを用いて解析した。

データセンターに集約されたデータから、精 神疾患のみの患者等データを除外し、慢性疲労 症候群(CFS)患者168名とその比較対照となる 健常人96名を、基本データベースとした。ここ には、35項目の背景データ(身長、体重、年齢等) と5つの検査(問診、血液検査、唾液検査、認知 課題検査、起立試験検査)から得られるすべて の検査数値を含めた。起立試験については、起 立試験全体([安静·閉眼·座位(以下、I位)] → [安静·開眼·座位 (Ⅱ位)] → [起立動作· 開眼(Ⅲ位)] → [立位維持・開眼(Ⅳ位)]) で 計測した心電のR波間隔データ(分解能、1,000 Hz)を、最大エントロピー法によりさらに周波 数解析し、0.04-0.15Hz範囲の周波数成分パワー 積分値 (LF) 並びに0.15 - 0.4Hz周波数成分パワー 積分値(HF)等を求め、自律神経機能を解析し た。これら解析結果は、研究班データセンター にフィードバックした。

数値化したそれぞれのデータ(データ項目総数279)の特性を把握するため、基礎的統計量を計算するとともに、健常人データについて年齢との相関を求めた。年齢との相関係数の絶対値が0.2を越えるデータ項目については、基準年齢を40歳として、全データに年齢補正を施した、以降、補正値を使用した。性についての補正は、健常人データの規模から、それを避けた。

各データ項目に対しt-検定等で群間比較した。 統計的に有意な水準 (p<0.05) を示したデータ項 目に対しては、ROC曲線等を作成し、感度と特 異度を算出した。

感度・特異度の値によりスクリーニングされたデータ項目を用い、全てのCFS患者と健常人を正しく分類できる最大の分類決定木を作成し、その原型木から漸次、交差確認法により最適なサイズに剪定した。交差確認法を含む全統計処理は統計計算アプリケーション、S-PLUS (Mathematical Systems, Inc., US) を用いた。

(倫理面への配慮)

大阪市立大学医学研究科倫理委員会において 研究承認された、臨床研究(介入研究)「慢性 疲労の診断技術の開発に関する研究」(承認番 号1497)、臨床研究(介入研究)「アンケート調査および唾液・液体・生体検体による慢性疲労の病因・病態の解明に関する研究」(承認番号1498)、臨床研究(介入研究)「慢性疲労の罹患リスクの同定、並びに診断・治療技術の開発」(承認番号1499)に準拠した研究計画「慢性疲労の診断技術の開発に関する研究」を、横浜国立大学ライフサイエンス研究倫理委員会に倫理審査申請し、同臨床研究倫理審査専門員会において承認(承認番号2)された研究方法に従い、研究対象者に対しての人権擁護上に派生する事象に対し配慮し、また研究対象者に対する不利益、危険性が排除されていること、研究参加を取りやめることの自由等を、十分に説明し、同意を得た上で実施した。

また、他機関で同様に取得された測定結果に関しては、匿名化された形態でのみデータを受領し、個人情報が特定されない様式のデータのみを、解析にあたっては使用した。

C. 研究結果

起立試験における自律神経応答

CFS患者と健常人のTP(=LF+HF)の起立試験応答の時系列をFig. 1に示す。ほとんどの健常人は起立(II位からII位)によりTPが上昇しその後もとの値へと減衰する様子(II位からIV位)が見られたが、CFS患者では変化がみられない。

周波数解析からのパワー値について、Ⅱ位からの値とⅢ位からの値の比に関して、0.04Hz以下のDC(直流成分)が特に顕著な群間差異を示した。



Fig. 1 規律負荷前後におけるTPの応答例

Table 1 t-検定においてp<0.05を示したデータ項目

CFS		Healty Volunteer		One-tailed,		CFS		Healty Volunteer		One-tailed,	ailed, "	CFS		Healty Volunteer		One-tailed,	
Items me	mean	sd	mean	sd	Homoscedas	Items	mean	sd	mean	sd	Homoscedas	Items	mean	sd	mean	sd	Homoscedas
アクティグラフ	541.657	129.512	405.925	63.413	5.3E-18	単純計算課題_項目	1.771	0.750	1.328	0.414	1.9E-07	HR(3)	83.145	10.980	79.179	10.515	0.0049
アクティグラフ	0.309	0.193	0.108	0.123	1.5E-16	アクティグラフ	440.365	100.023	380.819	57.536	2.1E-07	R-Rmin(1)	720.028	91.765	768.620	86.526	0.0053
BAP_dROM::BAI	2420.001	329.734	2770.314	321.258	5.9E-14	単純計算課題_項目	1.494	0.470	1.210	0.304	2.2E-07	R-Rmin(4)	640.301	103.345	677.260	104.513	0.0062
アクティグラフ	0.663	0.405	0.252	0.431	2.0E-12	単純計算課題_項目	1.143	0.650	0.754	0.438	3.6E-07	LF(1)	2.310	0.467	2.555	0.471	0.0064
アクティグラフ	189.701	30.477	216.922	24.717	5.7E-12	単純計算課題_項目	1.533	0.512	1.231	0.323	3.6E-07	SDDC(4)	2.105	0.508	2.266	0.380	0.0065
単純計算課題_項目	215.116	63.552	266.653	57.836	7.2E-10	単純計算課題_項目	1.035	0.289	0.873	0.143	3.9E-07	R-Rmin(3)	608.434	94.783	642.120	97.506	0.0069
単純計算課題_項目	1.933	0.673	1.452	0.390	8.5E-10	単純計算課題_項目	1.001	0.279	0.846	0.134	4.8E-07	R-Rmax(4)	822.614	111.081	863.154	122.360	0.0072
単純計算課題_項目	210.891	62.949	261.716	57.748	9.2E-10	単純計算課題_項目	1.651	1.101	1.023	0.626	5.0E-07	HR(4)	83.446	11.403	79.602	10.569	0.0072
単純計算課題_項目	174.457	51.552	215.674	46.697	1.1E-09	単純計算課題_項目	1.574	1.015	0.992	0.621	6.1E-07	DC(1)	1.955	0.416	2.172	0.433	0.0073
単純計算課題_項目	170.703	51.072	211.274	46.830	1.6E-09	単純計算課題_項目	0.951	0.222	0.824	0.135	6.4E-07	HHV::HHV6_TM	2.343	1.053	2.823	0.836	0.0076
単純計算課題_項目	1.429	0.448	1.127	0.214	2.2E-09	二重負荷試験::N	671.350	181.866	565.701	123.288	1.1E-06	LF30(4)	2.317	0.510	2.468	0.364	0.0092
HR(4)/(1)	0.043	0.030	0.005	0.046	2.5E-09	単純計算課題_項目	-0.383	0.311	-0.569	0.262	1.5E-06	DDC(2)	2.040	0.494	2.177	0.369	0.0149
HR(3)/(1)	0.045	0.029	0.008	0.045	3.3E-09	単純計算課題_項目	0.377	0.150	0.280	0.159	2.2E-06	SDDDC(2)	2.284	0.470	2.411	0.348	0.0171
単純計算課題_項目	1.251	0.360	1.015	0.163	4.6E-09	単純計算課題_項目	-0.359	0.315	-0.545	0.274	2.8E-06	SDDC(2)	2.229	0.452	2.350	0.339	0.0177
単純計算課題_項目	4.819	2.607	3.107	1.302	6.0E-09	単純計算課題_項目	0.882	0.207	0.770	0.140	3.6E-06	BMI	20.929	3.408	21.813	2.970	0.0178
単純計算課題_項目	2.132	0.782	1.610	0.503	1.4E-08	単純計算課題_項目	0.230	0.102	0.175	0.069	4.4E-06	SDDC(1)	2.092	0.421	2.280	0.444	0.0180
単純計算課題_項目	40.188	13.348	50.442	13.521	1.5E-08	単純計算課題_項目	0.906	0.252	0.781	0.133	6.9E-06	二重負荷試験::N	934.013	205.022	875.926	201.444	0.0187
単純計算課題_項目	1.124	0.285	0.943	0.137	1.6E-08	単純計算課題_項目	0.714	0.292	0.556	0.243	1.0E-05	単純計算課題_項目	1.125	0.181	1.081	0.114	0.0198
単純計算課題_項目	40.659	13.475	50.979	13.570	1.6E-08	単純計算課題_項目	1.093	0.410	0.875	0.327	1.2E-05	二重負荷試験::T	1927.855	400.478	1825.215	310.656	0.0199
単純計算課題_項目	4.872	2.612	3.195	1.382	1.6E-08	二重負荷試験::T	1124.875	283.525	980.265	189.786	1.3E-05	単純計算課題_項目	0.000	0.000	0.000	0.000	0.0206
単純計算課題_項目	0.918	0.514	0.580	0.315	1.8E-08	単純計算課題_項目	1.410	0.523	1.138	0.421	1.8E-05	(3)/(2)DC	8.838	11.275	6.207	5.114	0.0208
単純計算課題_項目	0.247	0.257	0.061	0.224	1.8E-08	単純計算課題_項目	1.081	0.422	0.866	0.346	2.9E-05	単純計算課題_項目	0.000	0.000	0.000	0.000	0.0212
単純計算課題_項目	3.913	2.542	2.326	1.236	2.4E-08	単純計算課題_項目	0.139	0.229	0.009	0.257	3.3E-05	TP30(4)	2.527	0.456	2.645	0.350	0.0218
単純計算課題_項目	0.229	0.256	0.048	0.221	2.8E-08	単純計算課題_項目	1.394	0.538	1.126	0.430	3.6E-05	LF(4)	2.325	0.511	2.453	0.373	0.0229
単純計算課題_項目	3.100	1.460	2.167	0.884	3.7E-08	単純計算課題_項目	2.734	1.469	2.061	0.853	4.0E-05	二重負荷試験::N	1009.389	232.104	949.288	205.916	0.0237
単純計算課題_項目	1.378	0.479	1.084	0.238	4.3E-08	単純計算課題_項目	2.867	1.520	2.191	0.964	8.1E-05	SDLF(2)	2.214	0.504	2.342	0.386	0.0242
単純計算課題_項目	3.989	2.547	2.424	1.318	5.0E-08	二重負荷試験::N	810.908	170.986	734.192	125.642	1.5E-04	LN{ABS(LN(L/H3	-0.560	0.825	-0.915	1.403	0.0250
単純計算課題_項目	1.180	0.355	0.965	0.168	5.2E-08	単純計算課題_項目	0.354	0.166	0.280	0.129	1.5E-04	DC(2)	2.113	0.452	2.225	0.335	0.0261
単純計算課題_項目	2.686	1.266	1.895	0.731	5.4E-08	二重負荷試験::T	1718.007	332.826	1573.872	243.121	2.3E-04	AMYLASE	71.558	45.186	59.653	42.609	0.0267
単純計算課題_項目	2.999	1.395	2.119	0.850	5.5E-08	二重負荷試験::N	464.267	107.803	414.564	97.066	2.5E-04	FF_FR::FF2	0.090	0.070	0.108	0.064	0.0275
単純計算課題_項目	2.592	1.166	1.858	0.718	6.0E-08	単純計算課題_項目	0.897	0.391	0.723	0.337	2.6E-04	LF30(4)SD	2.137	0.510	2.258	0.372	0.0299
単純計算課題_項目	1.015	0.235	0.872	0.121	6.1E-08	単純計算課題_項目	0.363	0.164	0.292	0.133	2.8E-04	(3)/(2)CVRR	1.923	0.695	1.747	0.618	0.0308
単純計算課題_項目	1.421	0.525	1.107	0.262	8.5E-08	アクティグラフ	7.981	5.846	5.808	3.777	8.6E-04	HR(3)/(2)	1.132	0.078	1.112	0.081	0.0315
単純計算課題_項目	1.712	0.693	1.292	0.379	9.0E-08	二重負荷試験::MR	913.586	183.587	839.681	154.905	9.0E-04	R-Rmin(2)	717.675	112.249	746.329	104.489	0.0318
アクティグラフ	10.130	6.275	6.160	3.968	9.3E-08	R-Rmax(1)	897.486	122.166	976.600	117.310	0.0010	(3)/(2)TPSD	0.360	0.431	0.250	0.414	0.0330
単純計算課題_項目	1.018	0.252	0.866	0.134	9.4E-08	(3)/(2)CVRRSD	4.621	3.467	3.318	2.156	0.0010	CVRR30(3)SD	2.915	1.273	2.592	1.383	0.0426
単純計算課題_項目	1.205	0.383	0.979	0.185	1.0E-07	DC(4)	1.968	0.493	2.145	0.384	0.0028	単純計算課題_項	0.057	0.208	0.007	0.235	0.0458
単純計算課題_項目	0.989	0.223	0.856	0.120	1.1E-07	SDLF(1)	2.123	0.466	2.385	0.421	0.0031	SDLF(4)	2.144	0.517	2.252	0.374	0.0477
単純計算課題_項目	0.983	0.238	0.841	0.128	1.2E-07	FF_FR::FR2	0.032	0.014	0.037	0.009	0.0035	L/H(1)	0.089	0.433	0.247	0.504	0.0481
単純計算課題_項目	0.305	0.207	0.184	0.098	1.3E-07	HHV::HHV7_TM	3.783	1.313	4.417	0.813	0.0038	LF30(1)SD	2.210	0.665	2.427	0.585	0.0529
単純計算課題_項目	1.353	0.369	1.128	0.232	1.5E-07	HHV::HHV6_EZ1	2.737	1.363	2.204	1.646	0.0047	BAP_dROM::dR0	352.976	374.105	291.328	51.778	0.0562

データ項目ごとの群間比較

データセンター収録データと別途計算した自律神経機能代表値の計120項目について、CFS患者群と健常人群の群間比較を行った。統計的に有意な水準 (p<0.05) を示したデータ項目は135、そのうちp<0.01を示したデータ項目は88であった。それらをTable 1にまとめた。

データ項目の感度・特異度

統計的に有意な水準(p<0.01)を示したデータ項目について、ROC曲線を作成し、感度並びに特異度を計算した。Table 2に、22のデータ項目での結果を示す。

Table 2 最適カットオフ値と感度・特異度

	Cutoff Value	Sensitivity (%)	Specificity (%)
BAP	2644	91.4%	60.6%
dROM	318.5	35.4%	70.5%
単純計算試験::全:正答数	191.0	92.6%	41.7%
単純計算試験::全: n	205.0	90.4%	44.6%
デュアルタスク試験::MRT1	443.0	53.4%	88.4%
デュアルタスク試験::MRT2	602.2	62.1%	68.1%
Amylase	49.41	61.1%	52.6%
FF_FR::FR2	1.033	90.0%	52.8%
覚醒区間_中途睡眠回数	3.330	66.7%	75.5%
夜間睡眠区間_中途覚醒回数	1.667	74.8%	79.6%
夜間睡眠区間_夜間睡眠時間	443	53.0%	88.3%
total sleep_中途覚醒回数	9.660	47.0%	84.8%
total sleep_1日の睡眠回数	1.667	74.2%	79.3%
total sleep_総睡眠時間	481.3	62.9%	91.3%
HR(3)	83.53	51.8%	70.3%
HR(3)/(1)	9.660	46.6%	83.9%
HR(4)/(1)	1.043	83.8%	60.7%
LF/HF(4)/(1)	13.36	18.8%	94.4%
DC(3)/(2)	5.110	58.9%	62.2%
CVRR(3)/(2)	922.1	60.0%	75.8%

Primary診断における決定木

作成決定木において、生理的意味が取りやすい変数構成(合成変数を用いず)で、On siteで迅速に検査結果が得られるデータ項目で構成されるように設定し、交差確認法により、Fig. 2に示す決定木を候補として得た。

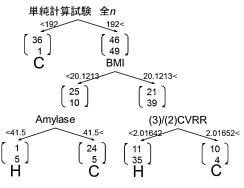


Fig. 2 Primary診断決定木の候補例

この決定木について、研究班において臨床の立場からさらに検討が加えられ、構造と検査項目の初期値選択を改めて、Primary決定木を改良した。改良したPrimary決定木をFig. 3に示す。

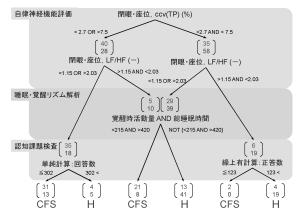


Fig. 3 Primary 決定木 version 2

このPrimary決定木version 2の感度、特異度をTable 3にまとめた。認知課題検査、安静閉眼時の自律神経機能評価、睡眠・覚醒リズム解析の3つを組み合わせることとにより、感度0.720、特異度0.756程度であった。尤度比は2.95であり、Primarilyな検査としては妥当な数値である。

Table 3 Primary決定木version 2全体の感度、 特異度、尤度比

CFS	Healthy V		
54	21		
21	65		
0.720			
0.756			
l Ratio	2.95		
	54 21 0.7 0.7		

Secondary診断決定木

次いで、CFS診断を確定するために有用であるが分析がOff siteとなる検査項目を加えてSecondary診断決定木を作成した。交差確認法で得られた決定木をFig. 4に示す。

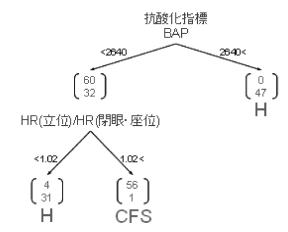


Fig. 4 分析がOff siteとなる検査項目を加えて作成し、交差確認法で剪定したSecondary 決定木

CFSが疑われて受診した専門病院で実施する Secondary診断決定木としては、血液中の酸化ストレス評価(抗酸化能BAP評価)、起立付加試験 における自律神経機能評価の組み合わせで感度 0.933、特異度0.987、陽性尤度比73.7と、極めて 正確にCFSを診断できることが判明した(Table 4)。

Table 4 Secondary決定木全体の感度、特異度、 尤度比

	CFS	Healthy V		
Positive (CFS)	56	1		
Negative (H)	4	78		
Sensitivity	0.933			
Specificity	0.987			
Positive Likelihood	l Ratio	73.7		

D. 健康危険情報

(総括研究報告書にまとめて記入)

E. 研究発表

1. 論文発表

- (1) D. M. Sahabi, M. Takeda, I. Suzuki, J. Koizumi. "Adsorption and abiotic oxidation of arsenic by aged biofilter media: equilibrium and kinetics." J. Hazard Mater., 168 (2-3), 1310-1318, (2009).
- (2) M. Takeda, K. Kondo, M. Yamada, J. Koizumi, T. Mashima, A. Matsugami, M.

- Katahira, "Solubilization and structural determination of a glycoconjugate which is assembled into the sheath of *Leptothrix cholodnii*." Int. J. Biol. Macromol., 46 (2), 206–211 (2010).
- (3) 倉恒弘彦,田島世貴,大川尚子,藤原和美, 池上 徹,廣澤巖夫,三戸秀樹,宗清芳美, 局 博一,倉恒大輔,笹部哲也,山口浩二, 大平辰朗,塩見格一,小泉淳一:精神作業 疲労に対する森林浴の疲労回復効果,日本 疲労学会誌,5(2)35-41(2010).
- (4) D. M. Sahabi, M. Takeda, I. Suzuki, J. Koizumi, "Comparison of arsenate, lead, and cadmium adsorption onto aged biofilter media," J. Environ. Eng., 136 (5), 493–500, (2010).
- (5) 小泉淳一:慢性的な疲労に対する心拍変動解析手順と診断決定木,日本疲労学会誌,6(2)43-48(2011).
- (6) Kondo K, Takeda M, Ejima W, Kawasaki Y, Umezu T, Yamada M, Koizumi J, Mashima T, Katahira M.: Study of a novel glycoconjugate, thiopeptidoglycan, and a novel polysaccharide lyase, thiopeptidoglycan lyase. Int J Biol Macromol. 2011 Mar 1; 48 (2): 256-62.
- (7) Takeda M, Kondo K, Yamada M, Koizumi J, Mashima T, Matsugami A, Katahira M: Solibilization and structural determination of a glycoconjugate which is assembled into the sheath of Leptothrix cholodnii. International Journal of Biological Macromolecules, 2010, 46, 206-211.
- (8) Takeda M, Kawasaki Y, Umezu T, Shimura S, Hasegawa M, Koizumi J.: Patterns of sheath elongation, cell proliferation, and manganese (II) oxidation in Leptothrix cholodnii. Arch Microbiol. 2012 Mar 4. [Epub ahead of print]
- (9) Takeda M, Muranushi T, Inagaki S, Nakao T, Motomatsu S, Suzuki I, Koizumi J.: Identification and Characterization of a Mycobacterial (2R, 3R) -2, 3-Butanediol Dehydrogenase. Biosci Biotechnol Biochem. 2011, Vol. 75, No. 12 pp. 2384-2389.
- (10) Takeda M, Kondo K, Yamada M,

Sumikawa M, Koizumi JI, Mashima T, Katahira M.: Presence of alternating glucosaminoglucan in the sheath of Thiothrix nivea. Int J Biol Macromol. 2012 Jan 1; 50 (1): 236-44.

2. 学会発表

- (1) 小泉淳一, 小菅元気, 前田準平, 増田久美子, 倉恒邦比古, 倉恒大輔, 田島世貴, 倉恒弘 彦: 心拍変動周波数解析から得られる加齢 指標, 第5回日本疲労学会学術集会 (2009) (日本疲労学会誌, 5 (1) 66 (2009)).
- (2) 倉恒弘彦,川瀬裕美,田島世貴,倉恒大輔, 大平辰朗,塩見格一,小泉淳一:森林浴の 抗疲労効果の検証,第5回日本疲労学会学 術集会(2009)(日本疲労学会誌,5(1) 78(2009)).
- (3) 小泉淳一, 増田久美子, 瀬古裕也, 西田 優, 田島世貴, 倉恒弘彦: 予防医療を目的とし た自律神経機能検査, 第6回日本疲労学会 学術集会 (2010) (日本疲労学会誌, 6 (1), 40 (2010)).
- (4) 大川尚子,田島世貴,藤原和美,池上 徹, 廣澤嚴夫,三戸秀樹,倉恒大輔,大平辰朗, 塩見格一,小泉淳一,笹部哲也,山口浩二, 倉恒弘彦:精神作業疲労に対する森林浴の 疲労回復効果,第6回日本疲労学会学術集 会(2010)(日本疲労学会誌,6(1),105 (2010)).
- (5) 石原世里奈, 芳住邦雄, 倉恒邦比古, 小泉 淳一, 倉恒弘彦: 高機能性繊維インナー着 用における快適感の心拍変動解析評価, 第 7回日本疲労学会学術集会(2011)(日本疲 学会誌, 7(1)81(2011)).
- (6) 児玉哲郎, 渋谷文那, 西田 優, 福田謙一, 齋田菜緒子, 藤井智恵子, 永谷 基, 小泉 淳一:歯科治療が自律神経機能に与える影響, 第7回日本疲労学会学術集会(2011)(日 本疲労学会誌, 7(1)87(2011)).
- (7) 西田 優, 増田久美子, 瀬古裕也, 貞苅 圭, 児玉哲郎, 渋谷文那, 安藤弘輝, 倉恒大輔, 福田早苗, 藤井比佐子, 田島世貴, 倉恒弘 彦, 小泉淳一:決定木モデルによる慢性疲 労症候群の診断法設計, 第7回日本疲労学 会学術集会(2011)(日本疲労学会誌, 7(1)

89 (2011)).

F. 知的財産権の出願・登録状況

- 1. 特許取得
- (1) 小泉淳一 外1名:「自律神経機能診断装置, 生体モニタリングシステムおよびプログラ ム」, 特願2010-278979 (平成22年12月15日)
- (2) 小泉淳一 外5名:「自律神経機能年齢の判定 システム及び判定方法」,特願2011-007680 (平成23年1月18日)
- 2. 実用新案登録 なし
- 3. その他 なし